08.01.21

LO: Multiply 2-digits by

2-digits.

Success Criteria

I can use my knowledge of exchanging and place value to understand the formal short multiplication method.

1.
$$5 \times 3 = 15$$
 \downarrow 10 times \downarrow

2.
$$50 \times 3 = 150$$

$$3. 5 \times 30 = 150$$

4.
$$2 \times 40 = 80$$

10 times

$$5. 2 \times 400 = 800$$

Let's work out:

$$22 \times 13 = 286$$

Now you try:

$$34 \times 12 = 408$$

Let's try another:

$$45 \times 15 = 675$$

Now you try:

Let's look at yesterday's calculation:

$$56 \times 17 = 952$$

	Н	Т	0
		5	6
×		1	7
	3	9	2
	5	6	0
	9	5	2
	X	A	

Tommy wants to find the area of the blue part of the rectangle. How can he do this?

Work out the area of the blue rectangle first:

$$35 \times 16 = 560 \text{cm}^2$$

	I	Т	0
		3	5
•		1	6
	2,	1	0
_	3	5	0
	5	6	0

Tommy wants to find the area of the blue part of the rectangle. How can he do this?

Next work out the area of the white rectangles:

$$12 \times 7 = 84 \text{cm}^2$$

 $84 \times 2 = 168 \text{cm}^2$

Now take the area of the white rectangles away from the area of the blue rectangle:

$$560 \text{cm}^2 - 168 \text{cm}^2 = 392 \text{cm}^2$$

PROBLEM SOLVING

LO: Multiply 2-digits by 2-digits.

Amir has multiplied 47 by 36

		4	7
×		3	6
	2	8 4	2
	1	4 2	1
	3	2	3

Alex says,

Amir is wrong because the answer should be 1,692 not 323

Who is correct?
What mistake has been made?

Independent work

- 1. Complete the worksheet.
- 2. Have a go at the extension activities.
- 3. Write a self-assessment.

Extension:

Complete the calculation to work out 23 \times 14

		2	3	
×		1	4	
		9	2	(23×4)
	2	3	0	(23 × 1 <mark>0</mark>)

Use this method to calculate:

$$34 \times 26$$
 58×15 72×35

Complete to solve the calculation.

		4	6	
×		2	7	
	3	2 4	2	(×)
	9 1	2	0	(×)

Use this method to calculate:

$$27 \times 39 \quad 46 \times 55 \quad 94 \times 49$$

Calculate:

$$38 \times 12$$

$$39 \times 12$$

$$38 \times 11$$

What's the same? What's different?

Use your purple pen:

Answer the following questions:

- 1. Why is the **zero** important in multiplication?
- 2. If we know what 38×12 is equal to, how else could we work out 39×12 ?